02 May 2010

Posted in
C

Please help us keep this glossary of Technical Terms up to date by sending us your criticism, comments or suggestions.

Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it

# Cryptography

Cryptography (or cryptology; from Greek, kryptos, "hidden, secret"; and, graphein, "writing", or, -logia, "study", respectively) is the practice and study of hiding information. Modern cryptography intersects the disciplines of mathematics, computer science, and electrical engineering. Applications of cryptography include ATM cards, computer passwords, and electronic commerce.

Cryptology prior to the modern age was almost synonymous with encryption, the conversion of information from a readable state to apparent nonsense. The sender retained the ability to decrypt the information and therefore avoid unwanted persons being able to read it. Since World War I and the advent of the computer, the methods used to carry out cryptology have become increasingly complex and its application more widespread.

Modern cryptography follows a strongly scientific approach, and designs cryptographic algorithms around computational hardness assumptions, making such algorithms hard to break by an adversary. Such systems are not unbreakable in theory but it is infeasible to do so by any practical means. These schemes are therefore computationally secure. There exist information-theoretically secure schemes that provably cannot be broken—an example is the one-time pad--but these schemes are more difficult to implement than the theoretically breakable but computationally secure mechanisms.

Cryptology-related technology has raised a number of legal issues. In the United Kingdom, additions to the Regulation of Investigatory Powers Act 2000 requires a suspected criminal to hand over their encryption key if asked by law enforcement. Otherwise the user will face a criminal charge. The Electronic Frontier Foundation is involved in a case in the Supreme Court of the United States, which will assertain if requiring suspected criminals to provide their encryption keys to law enforcement is nonconstitutional. The EFF is arguing that this is a violation of the right of not being forced to incriminate oneself, as given in the fifth amendment.

The computer era

The development of digital computers and electronics after WWII made possible much more complex ciphers. Furthermore, computers allowed for the encryption of any kind of data representable in any binary format, unlike classical ciphers which only encrypted written language texts; this was new and significant. Computer use has thus supplanted linguistic cryptography, both for cipher design and cryptanalysis. Many computer ciphers can be characterized by their operation on binary bit sequences (sometimes in groups or blocks), unlike classical and mechanical schemes, which generally manipulate traditional characters (i.e., letters and digits) directly. However, computers have also assisted cryptanalysis, which has compensated to some extent for increased cipher complexity. Nonetheless, good modern ciphers have stayed ahead of cryptanalysis; it is typically the case that use of a quality cipher is very efficient (i.e., fast and requiring few resources, such as memory or CPU capability), while breaking it requires an effort many orders of magnitude larger, and vastly larger than that required for any classical cipher, making cryptanalysis so inefficient and impractical as to be effectively impossible.

Credit card with smart-card capabilities. The 3-by-5-mm chip embedded in the card is shown, enlarged. Smart cards combine low cost and portability with the power to compute cryptographic algorithms.

Extensive open academic research into cryptography is relatively recent; it began only in the mid-1970s. In recent times, IBM personnel designed the algorithm that became the Federal (i.e., US) Data Encryption Standard; Whitfield Diffie and Martin Hellman published their key agreement algorithm,; and the RSA algorithm was published in Martin Gardner's Scientific American column. Since then, cryptography has become a widely used tool in communications, computer networks, and computer security generally. Some modern cryptographic techniques can only keep their keys secret if certain mathematical problems are intractable, such as the integer factorization or the discrete logarithm problems, so there are deep connections with abstract mathematics. There are no absolute proofs that a cryptographic technique is secure (but see one-time pad); at best, there are proofs that some techniques are secure if some computational problem is difficult to solve, or this or that assumption about implementation or practical use is met.

As well as being aware of cryptographic history, cryptographic algorithm and system designers must also sensibly consider probable future developments while working on their designs. For instance, continuous improvements in computer processing power have increased the scope of brute-force attacks, thus when specifying key lengths, the required key lengths are similarly advancing. The potential effects of quantum computing are already being considered by some cryptographic system designers; the announced imminence of small implementations of these machines may be making the need for this preemptive caution rather more than merely speculative.

Essentially, prior to the early 20th century, cryptography was chiefly concerned with linguistic and lexicographic patterns. Since then the emphasis has shifted, and cryptography now makes extensive use of mathematics, including aspects of information theory, computational complexity, statistics, combinatorics, abstract algebra, number theory, and finite mathematics generally. Cryptography is, also, a branch of engineering, but an unusual one as it deals with active, intelligent, and malevolent opposition (see cryptographic engineering and security engineering); other kinds of engineering (e.g., civil or chemical engineering) need deal only with neutral natural forces. There is also active research examining the relationship between cryptographic problems and quantum physics (see quantum cryptography and quantum computing).

Modern cryptography

The modern field of cryptography can be divided into several areas of study. The chief ones are discussed here; see Topics in Cryptography for more.

Symmetric-key cryptography

Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key (or, less commonly, in which their keys are different, but related in an easily computable way). This was the only kind of encryption publicly known until June 1976.

One round (out of 8.5) of the patented IDEA cipher, used in some versions of PGP for high-speed encryption of, for instance, e-mail

The modern study of symmetric-key ciphers relates mainly to the study of block ciphers and stream ciphers and to their applications. A block cipher is, in a sense, a modern embodiment of Alberti's polyalphabetic cipher: block ciphers take as input a block of plaintext and a key, and output a block of ciphertext of the same size. Since messages are almost always longer than a single block, some method of knitting together successive blocks is required. Several have been developed, some with better security in one aspect or another than others. They are the modes of operation and must be carefully considered when using a block cipher in a cryptosystem.

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are block cipher designs which have been designated cryptography standards by the US government (though DES's designation was finally withdrawn after the AES was adopted). Despite its deprecation as an official standard, DES (especially its still-approved and much more secure triple-DES variant) remains quite popular; it is used across a wide range of applications, from ATM encryption to e-mail privacy and secure remote access. Many other block ciphers have been designed and released, with considerable variation in quality. Many have been thoroughly broken, such as FEAL.

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key material, which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-time pad. In a stream cipher, the output stream is created based on a hidden internal state which changes as the cipher operates. That internal state is initially set up using the secret key material. RC4 is a widely used stream cipher; see Category:Stream ciphers. Block ciphers can be used as stream ciphers; see Block cipher modes of operation.

Cryptographic hash functions are a third type of cryptographic algorithm. They take a message of any length as input, and output a short, fixed length hash which can be used in (for example) a digital signature. For good hash functions, an attacker cannot find two messages that produce the same hash. MD4 is a long-used hash function which is now broken; MD5, a strengthened variant of MD4, is also widely used but broken in practice. The U.S. National Security Agency developed the Secure Hash Algorithm series of MD5-like hash functions: SHA-0 was a flawed algorithm that the agency withdrew; SHA-1 is widely deployed and more secure than MD5, but cryptanalysts have identified attacks against it; the SHA-2 family improves on SHA-1, but it isn't yet widely deployed, and the U.S. standards authority thought it "prudent" from a security perspective to develop a new standard to "significantly improve the robustness of NIST's overall hash algorithm toolkit." Thus, a hash function design competition is underway and meant to select a new U.S. national standard, to be called SHA-3, by 2012.

Message authentication codes (MACs) are much like cryptographic hash functions, except that a secret key can be used to authenticate the hash value upon receipt.

Public-key cryptography

Symmetric-key cryptosystems use the same key for encryption and decryption of a message, though a message or group of messages may have a different key than others. A significant disadvantage of symmetric ciphers is the key management necessary to use them securely. Each distinct pair of communicating parties must, ideally, share a different key, and perhaps each ciphertext exchanged as well. The number of keys required increases as the square of the number of network members, which very quickly requires complex key management schemes to keep them all straight and secret. The difficulty of securely establishing a secret key between two communicating parties, when a secure channel does not already exist between them, also presents a chicken-and-egg problem which is a considerable practical obstacle for cryptography users in the real world.

Whitfield Diffie and Martin Hellman, authors of the first published paper on public-key cryptography

In a groundbreaking 1976 paper, Whitfield Diffie and Martin Hellman proposed the notion of public-key (also, more generally, called asymmetric key) cryptography in which two different but mathematically related keys are used—a public key and a private key. A public key system is so constructed that calculation of one key (the 'private key') is computationally infeasible from the other (the 'public key'), even though they are necessarily related. Instead, both keys are generated secretly, as an interrelated pair. The historian David Kahn described public-key cryptography as "the most revolutionary new concept in the field since polyalphabetic substitution emerged in the Renaissance".

In public-key cryptosystems, the public key may be freely distributed, while its paired private key must remain secret. The public key is typically used for encryption, while the private or secret key is used for decryption. Diffie and Hellman showed that public-key cryptography was possible by presenting the Diffie–Hellman key exchange protocol.

In 1978, Ronald Rivest, Adi Shamir, and Len Adleman invented RSA, another public-key system.

In 1997, it finally became publicly known that asymmetric key cryptography had been invented by James H. Ellis at GCHQ, a British intelligence organization, and that, in the early 1970s, both the Diffie–Hellman and RSA algorithms had been previously developed (by Malcolm J. Williamson and Clifford Cocks, respectively).

The Diffie–Hellman and RSA algorithms, in addition to being the first publicly known examples of high quality public-key algorithms, have been among the most widely used. Others include the Cramer–Shoup cryptosystem, ElGamal encryption, and various elliptic curve techniques. See Category:Asymmetric-key cryptosystems.

Padlock icon from the Firefox Web browser, meant to indicate a page has been sent in SSL or TLS-encrypted protected form. However, such an icon is not a guarantee of security; any subverted browser might mislead a user by displaying such an icon when a transmission is not actually being protected by SSL or TLS.

In addition to encryption, public-key cryptography can be used to implement digital signature schemes. A digital signature is reminiscent of an ordinary signature; they both have the characteristic that they are easy for a user to produce, but difficult for anyone else to forge. Digital signatures can also be permanently tied to the content of the message being signed; they cannot then be 'moved' from one document to another, for any attempt will be detectable. In digital signature schemes, there are two algorithms: one for signing, in which a secret key is used to process the message (or a hash of the message, or both), and one for verification, in which the matching public key is used with the message to check the validity of the signature. RSA and DSA are two of the most popular digital signature schemes. Digital signatures are central to the operation of public key infrastructures and many network security schemes (e.g., SSL/TLS, many VPNs, etc.).

Public-key algorithms are most often based on the computational complexity of "hard" problems, often from number theory. For example, the hardness of RSA is related to the integer factorization problem, while Diffie–Hellman and DSA are related to the discrete logarithm problem. More recently, elliptic curve cryptography has developed in which security is based on number theoretic problems involving elliptic curves. Because of the difficulty of the underlying problems, most public-key algorithms involve operations such as modular multiplication and exponentiation, which are much more computationally expensive than the techniques used in most block ciphers, especially with typical key sizes. As a result, public-key cryptosystems are commonly hybrid cryptosystems, in which a fast high-quality symmetric-key encryption algorithm is used for the message itself, while the relevant symmetric key is sent with the message, but encrypted using a public-key algorithm. Similarly, hybrid signature schemes are often used, in which a cryptographic hash function is computed, and only the resulting hash is digitally signed.